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Quantitative-Trait Homozygosity and Association Mapping
and Empirical Genomewide Significance in Large, Complex
Pedigrees: Fasting Serum-Insulin Level in the Hutterites
Mark Abney,1,2 Carole Ober,1 and Mary Sara McPeek1,2

Departments of 1Human Genetics and 2Statistics, University of Chicago, Chicago

We present methods for linkage and association mapping of quantitative traits for a founder population with a
large, known genealogy. We detect linkage to quantitative-trait loci (QTLs) through a multipoint homozygosity-
mapping method. We propose two association methods, one of which is single point and uses a general two-allele
model and the other of which is multipoint and uses homozygosity by descent for a particular allele. In all three
methods, we make extensive use of the pedigree and genotype information, while keeping the computations simple
and efficient. To assess significance, we have developed a permutation-based test that takes into account the
covariance structure due to relatedness of individuals and can be used to determine empirical genomewide and
locus-specific P values. In the case of multivariate-normally distributed trait data, the permutation-based test is
asymptotically exact. The test is broadly applicable to a variety of mapping methods that fall within the class of
linear statistical models (e.g., variance-component methods), under the assumption of random ascertainment with
respect to the phenotype. For obtaining genomewide P values, our proposed method is appropriate when positions
of markers are independent of the observed linkage signal, under the null hypothesis. We apply our methods to a
genome screen for fasting insulin level in the Hutterites. We detect significant genomewide linkage on chromosome
19 and suggestive evidence of QTLs on chromosomes 1 and 16.

Introduction

Although there have recently been a few exceptions (e.g.,
Horikawa et al. 2000; Hugot et al. 2001; Tavtigian et
al. 2001), most attempts to map complex genetic traits
in humans have had limited success. The difficulties
stem, in part, from genetic heterogeneity, trait-influenc-
ing alleles of small effect, and the confounding effects
of environmental components. These factors have led
some (Lander and Schork 1994; Wright et al. 1999; Shif-
man and Darvasi 2001) to suggest that isolated founder
populations may be efficacious for complex-trait map-
ping, although there has been some recent debate about
this issue (Boehnke 2000; Eaves et al. 2000; Taillon-
Miller et al. 2000). The focus of these discussions has
been primarily on linkage-disequilibrium (LD)–mapping
methods, but the possible advantages of these popula-
tions are present for linkage studies as well. Most current
methods, however, have been designed for use primarily
in heterogeneous, outbred populations, with attendant
study designs, and may not exploit the advantageous
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characteristics of isolated, founder populations, partic-
ularly ones with a large, known pedigree. Here, we pre-
sent methods, for linkage and LD mapping for quanti-
tative traits, that capitalize on these advantages and
address the difficulties associated with complex, inbred
genealogies. Furthermore, we propose a novel permu-
tation-based test that is simple, yet can provide empir-
ical, asymptotically exact, genomewide P values for all
loci in an initial genome screen, when used with mul-
tivariate-normal phenotype data collected on individuals
from a complex, inbred pedigree.

Founder populations with large, known pedigrees
both present potential advantages and pose computa-
tional challenges for linkage and LD mapping (Ober
and Cox 1998). Because linkage mapping relies on es-
tablishing an association between the trait and the in-
heritance pattern deduced from genotypes, the ability
to calculate identity-by-descent (IBD) information for
the observed alleles is crucial. Exact multipoint calcu-
lations, however, are limited to moderate-sized pedi-
grees, in spite of recent advances in efficiency (Kruglyak
and Lander 1998; Gudbjartsson et al. 2000; Markianos
et al. 2001). Instead, approximate methods, such as
correlation-based (Almasy and Blangero 1998) or Mar-
kov-chain Monte Carlo (Thompson and Heath 1999)
algorithms, have proven very useful. However, in ex-
tremely large and complex pedigrees, these methods are
computationally challenging as well, especially in the
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context of genome screens. Another, computationally
simpler, option is to ignore portions of the genealogy
and treat the resultant pedigrees—or individuals, in the
case of LD mapping—as independent. However, this
can reduce the power to detect linkage (Dyer et al. 2001)
and, particularly in the case of LD mapping, increase
the false-positive rate (Newman et al. 2001).

We take a hybrid approach of trying to use as much
of the pedigree information as we can, while keeping the
computations simple and rapid enough to use for a ge-
nome screen. We have developed methods for linkage
and association mapping of quantitative-trait loci (QTLs)
in complex, inbred pedigrees in which we make extensive
use of the pedigree information to try to take into account
the relatedness of the individuals. The linkage method
we present is a homozygosity-mapping method, which
relies on the existence of regions that are homozygous
by descent (HBD) in inbred individuals, to detect QTLs
that act recessively. We use a given individual’s multilocus
genotype information and the complete pedigree infor-
mation to estimate the individual’s conditional proba-
bility of HBD at arbitrary loci in the genome, via a hidden
Markov model (HMM) method. The first of our asso-
ciation-mapping methods uses an extension of our HBD
calculation to determine the probability of an individual
being HBD for specific marker alleles, and it tests for
association of the marker alleles with deviations from the
mean of the quantitative trait. In addition, we use a sin-
gle-point method to detect association under a general
two-allele model (GTAM) (of which additive, dominant,
and recessive are all special cases). In all methods, the
effect of an allele or locus is represented as a main effect,
rather than as a variance component, in a linear model,
which should provide us with increased power and ro-
bustness to nonnormality (Lehmann 1986, sec. 5.4). In-
fluences due to the polygenic background are taken into
account by means of additive and dominance variance
components.

Each of the three mapping methods that we develop
produces a test statistic for which significance must be
assessed. For linkage tests, when complete IBD infor-
mation is assumed, it is, in principle, possible to perform
straightforward simulation to assess either locus-specific
or genomewide significance in arbitrary pedigrees. How-
ever, for association tests or for linkage tests with incom-
plete IBD information, the situation is far from straight-
forward. In some cases, when the sampling distribution
of the test statistic is known or can be approximated,
one can use this distribution to assess locus-specific P
values. Then, to assess genomewide significance for link-
age, researchers have typically used locus-specific signif-
icance thresholds suggested by Lander and Kruglyak
(1995), although these thresholds were calculated for
very specific types of study designs. There is no reason
to expect such thresholds to be relevant to data from a

single large pedigree or a few large pedigrees, as is the
case we consider. For a linkage test with incomplete IBD
information, one could assess locus-specific and ge-
nomewide significance by simulation under the as-
sumption of complete IBD information. However, this
is time consuming, would typically be overly conser-
vative, and is not sufficient to assess significance for
association studies. The use of a chromosome-dropping
simulation approach to assess significance for linkage
studies under incomplete IBD information or for as-
sociation studies is difficult and problematic. For in-
stance, assumptions about founder allele and haplotype
frequencies are needed. Furthermore, when one drops
chromosomes down a large, complex pedigree, such as
the Hutterites, marker characteristics (e.g., frequency
spectrum and informativeness) tend to differ noticeably
between the bottom of the pedigree and the top, with
rare alleles often lost by drift. Because marker charac-
teristics are assumed to be ancillary, it is desirable to
condition on them. However, it is usually not clear on
what characteristics one should condition, and even if
it were clear, it would generally be a difficult technical
challenge to design a simulation that did condition on
them.

Recent proposals for alternative methods that identify
genomewide significant markers include a sequential
analysis approach (Province 2000) and a confidence-set
approach (Lin et al. 2001). The procedure of Province
(2000) requires many independent sampling units (e.g.,
sib pairs or pedigrees), and it is not clear how one could
apply this method to the case of a single large pedigree
or a few large pedigrees. The confidence-set approach
of Lin et al. (2001) requires that the mapping method
be able to yield a hypothesis test of the form H :v �0

versus , where v is the recombination frac-v H :v 1 v0 a 0

tion between the locus being tested and the trait locus,
and is some fixed value. In the mapping0 ! v ! 1/20

methods that we propose, v is confounded with the ef-
fect size of the trait locus, so the method of Lin et al.
(2001) is not applicable.

Instead, we assess empirical genomewide significance
for each locus using a novel permutation-based test. De-
termining significance by means of a permutation test has
been done for QTLs in experimental populations (Chur-
chill and Doerge 1994), the Haseman-Elston method
with sib pairs (Wan et al. 1997), and an association test
for QTLs in nuclear families (Abecasis et al. 2000). A
difficulty with permutation tests in general family struc-
tures is the lack of exchangeability that results from cor-
relations due to familial relatedness and the estimation
of covariates. Iturria et al. (1999) proposed a permuta-
tion-type test that attempts to approximately maintain
the familial correlation structure when mapping QTLs
via variance components. Our test is appropriate for the
generalized multiple regression problem for which, al-
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though there are approximate tests, there is, in general,
no exact test (Anderson and Robinson 2001). The test
we propose here is exact when the distribution of the
phenotype data is multivariate normal with a known
covariance matrix and precisely preserves the correlation
structure in that case.

In the “Methods” section, we first describe our like-
lihood model and derive the efficient score statistic for
detection of linkage. We then demonstrate how the
HMM is used to approximate the probabilities of HBD,
which are subsequently used for homozygosity mapping.
The LD-mapping methods are described, and we show
that all the methods can be placed within the framework
of a generalized regression problem. The “Methods” sec-
tion concludes with a derivation of the permutation-
based test. In the “Results” section, we demonstrate the
utility of our methods by analyzing fasting insulin level
in the Hutterites.

Methods

Below, we detail the statistical development of our map-
ping methods. In the “Genetic Model for Linkage Detec-
tion by Homozygosity Mapping” subsection, we describe
our mathematical model for a trait that is influenced by
a recessive-acting QTL. That is, we consider a collection
of individuals where the phenotype of the kth individu-
al, , is determined by a set of covariates (e.g., age andyk

sex), the genetic effect of being HBD at the QTL, and
the effects of (possibly) many other loci (i.e., a polygenic
background). Because the individuals are, in general, re-
lated, we account for correlation in the polygenic back-
ground through a covariance matrix. We assume the trait
has a multivariate-normal distribution, allowing us to
specify a likelihood function. However, because a full
maximum-likelihood analysis would be very time con-
suming, we instead base our inference on the efficient
score statistic. We develop this statistic and demonstrate
its asymptotic equivalence to the t statistic of generalized
linear regression in the “Efficient Score Statistic” sub-
section. This statistic requires calculation of the prob-
ability of each individual being HBD, given the genotype
data. Our approximation of this probability is accom-
plished using an HMM and is fully described in the
“Probability of HBD” subsection. The method, which
is a test for linkage, can also be reformulated to be a
test of association, which, in addition to a single-point
test for association under a general genetic model, we
describe in the “LD-Mapping Methods” subsection. Fi-
nally, we present a new permutation-based test that al-
lows us to calculate empirical locus-specific and ge-
nomewide significance. The test hinges on finding a
linear transformation that, when applied to the phe-
notypic residuals, results in independent random vari-
ables, in the case of a multivariate-normal phenotype.

In the “Assessment of Significance” subsection, we de-
rive this transformation and explain its application to
obtain P values.

Genetic Model for Linkage Detection
by Homozygosity Mapping

We first consider a genetic model, for linkage map-
ping, in which having two copies of the same founder
allele at a QTL (i.e., being HBD) influences the expected
value of the trait. Defining as the phenotypic value ofyk

the kth individual and as the vector of phenotype val-y
ues for the study sample, we consider the model for the
quantitative trait as

y p Xb � g1 � g � e, (1)h

where is the matrix of covariate values; is a vectorX b

of fixed effects; is the indicator vector of HBD at the1h

QTL (i.e., the kth element is equal to one if the kth
individual is HBD at the QTL and is equal to zero oth-
erwise); g measures the QTL effect size; is the randomg
polygenic background effect; and the environmental ef-
fects are assumed to be independent and identicallye
distributed normal random variables. The random2(0,j )e

effects and are independent and do not depend one g
or . We furthermore assume the distribution of toX 1 gh

be multivariate normal, with mean zero and covariance
matrix . Here, is the matrix of kin-2 2Q p 2Fj � D j Fa 7 d

ship coefficients, is the matrix whose th element isD i,j7

the probability that individual i shares two alleles IBD
with j with neither individual being autozygous, and

and are the additive and dominance variances,2 2j ja d

respectively. Fisher (1918) suggested this as an approx-
imation to the case of a large number of loci with small
genetic effects and additivity across loci, assuming that
conditions of a central-limit theorem are met. Some suf-
ficient conditions for a central-limit theorem have been
derived by Lange (1978) and extended to include both
inbreeding and dominance variance by Abney et al.
(2000). The trait models require the assumption of either
(a) unlinked QTLs or (b) linked QTLs with the con-
straint that, on each chromosome, at most one locus has
nonzero inbreeding depression.

Efficient Score Statistic

To derive the score statistic to test the null hypothesis
of no linkage between a locus and a QTL, we must
specify a likelihood model that accurately reflects the
ascertainment of the data. Here, we assume the individ-
uals are a random sample of the population and are all
related through a known pedigree. That is, they have
not been selected for study on the basis of their pheno-
types. Given phenotypes and genotypes of these ran-
domly ascertained individuals, we write the joint prob-
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ability of the data as P(genotype and phenotype data) p
P(phenotype data)P(genotype data). WedataFgenotype
assume that P(genotype data) is determined by the in-
heritance process and depends only on founder haplo-
type frequencies, not on any genetic model parameters.

Therefore, the genotype data are ancillary, and it is
desirable to base inference on the conditional likelihood,
given the genotype data. (The same reasoning applies to

, , and , and so, in what follows, we treat these asX F D7

fixed.) First, we consider the likelihood when the geno-
type data are fully informative. That is, we know the
complete inheritance information and, hence, the HBD
state of every individual. For a known pedigree structure,
the conditional log-likelihood for the model specified in
equation (1) is

n 1
l(v) p ln (yF1 ) p � ln 2p � FQFv h 2 2

1 t �1� (y � Xb � g1 ) Q (y � Xb � g1 ) , (2)h h2

where is the vector of parameter val-t 2 2 2 tv p (b ,g,j ,j ,j )a d e

ues and n is the number of individuals in the study
sample.

To write the probability of the phenotype data con-
ditional on the observed (i.e., incomplete) genotype data,
we form a sum over all . Because the conditional prob-1h

ability of the phenotype data given the indicator of HBD
is independent of the observed genotype data, the re-
sulting incomplete data likelihood is

L (v) p (yFgenotype data)I

p (yF1 ) (1 Fgenotype data) . (3)� h v h
1h

The first term in the summand is determined by equation
(2). When calculating the score statistic below, we as-
sume , wherev(1 Fgenotype data) p (1 Fgenotype data)h h

denotes the vector of parameter values under the nullv0

model. This is reasonable because there is no phenotype
information on either side of the equation.

We wish to devise a test of the null hypothesis
( ) versus the alternative hypothesis ( ) at ag p 0 g ( 0
locus. One possibility would be to maximize the likeli-
hood (eq. [3]) under both the null and the alternative
hypotheses and to use the likelihood-ratio test. However,
calculating the distribution can bev(1 Fgenotype data)h

computationally intractable for large pedigrees. Also,
when genotyping error is included in the model (see be-
low), the number of terms in the sum in equation (3)
grows as , where N is the number of individuals inN2
the study with a nonzero inbreeding coefficient. For large
N values, the number of terms in the sum can be com-
putationally overwhelming. Instead, we develop a test

that is based on the score statistic (Cox and Hinkley
1974). The score statistic has the property that, under
the null hypothesis, it is asymptotically equivalent to the
likelihood-ratio statistic and is locally most powerful.
That is, it is most powerful for alternatives “close” to
the null hypothesis. Furthermore, the statistic depends
only on the null parameter values and, thus, does not
require estimation of all the parameters under the al-
ternative hypothesis, although these estimates may be of
general interest. In defining the score statistic, we write
the vector of parameters as , where g is the pa-t tv (g,w )
rameter of interest and is the vector oft 2 2 2 tw p (b ,j ,j ,j )a d e

nuisance parameters. Define by , theŵ arg max L (g ,w)0 w I 0

value of the vector of nuisance parameters that maxi-
mizes the null likelihood. Writing , thel (v) p ln L (v)I I

score statistic is , where2 gg ggˆS p (�l /�g) F (g ,w ) F pˆI g ,w 0 00 0

and is the submatrix of the Fish-�1 �1(F � F F F ) Fgg gw gg wg ij

er information matrix corresponding to vectors i and j
(e.g., when has length k, is with first kb F 1 # (k � 3)gw

elements given by and2F p �E (� l/�g�b ),i p 1, … ,kgb v ii

so on). Using the form of the likelihood in equation (3),
we obtain , wheret �1 2 t �1 �1ˆ ˆ ˆS p [h Q (y � Xb )] [h Q (I � H)h]0 0 0

, andt �1 �1 t �1ˆ ˆH p X(X Q X) X Q h p E(1 Fgenotype data)0 0 h

, the estimate of obtained by maximizing theˆ ˆQ p Q(w ) Q0 0

likelihood under the null hypothesis.
A more intuitive understanding arises when we

consider the linear model

y p Xb � gh � e p Wh � e , (4)

where , and .tVar (e) p W W p (X h) h p (b g)
Now, we restrict and consider the estimateˆW p rQ0

obtained from generalized linear regression, h̃ p
. Taking the last component givest �1 �1 t �1ˆ ˆ(W Q W) W Q y0 0

. Furthermore,t �1 t �1 �1ˆ ˆ ˆg̃ p h Q (y � Xb ) [h Q (I � H)h]0 0 0

noting that givest �1 �1ˆ ˜˜Var (h) p r (W Q W) Var (g) p0

. The t statistic would then bet �1 �1ˆr [h Q (I � H)h]0

calculated as , where�1 t �1 1/2ˆˆ ˆ˜t p g[r h Q (I � H)h] r p0

, n is the sample size,�1 t �1ˆ˜ ˜(n � k � 1) (y � Wh) Q (y � Wh)0

and k is the dimension of . From this, we can see thatb

the score statistic is related to the square of the t statistic
by . Note that, under the null hypothesis,2ˆ ˆS p rt r p

. Thus, the t statistic obtained from gen-�1/21 � O (n )p

eralized regression of the phenotype against the prob-
ability of HBD can be considered a version of the effi-
cient score statistic. This t-test formulation provides us
with a computationally feasible test that is asymptoti-
cally locally most powerful.

Probability of HBD

Our score-statistic approach requires that, at a given
locus, we calculate , or, equiv-h p E(1 Fgenotype data)h

alently, the marginal probability that each individual is
HBD, given all the genotype data. For moderately sized
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pedigrees, an exact calculation is feasible using methods
based on the Lander-Green-Kruglyak algorithm (Lander
and Green 1987; Kruglyak and Lander 1998; Gudbjarts-
son et al. 2000; Markianos et al. 2001). For large pedi-
grees, approximate methods must be used. A number of
strategies have been used to calculate probabilities of IBD
in large pedigrees in which exact calculations are not fea-
sible. One option is to do a “local” calculation where
only a subset of the entire genealogy is used, resulting in
smaller, and simpler, subpedigrees (Ginns et al. 1998;
Ober et al. 2000; Hsueh et al. 2001). Doing so, however,
may deprive the method of valuable information regard-
ing the relationships among the individuals, with results
dependent on precisely how the subpedigrees were chosen.
The use of Markov-chain Monte Carlo methods is an-
other strategy that has been implemented in some cases
(Thompson and Heath 1999). These methods can also be
very computationally rigorous and pose their own chal-
lenges regarding the choice of an effective sampler, en-
suring the irreducibility of the Markov chain, and pro-
viding favorable convergence properties.

Calculation of h, however, does not require calcula-
tion of the conditional probability of IBD sharing states
among arbitrary sets of relatives, but rather just the con-
ditional probability of the two alleles of any individual
being IBD. Although a simpler problem, it is still a com-
putationally burdensome task to calculate exactly. In ap-
proaching the problem, we use the entire pedigree but
only a portion of the genotype data. We use the entire
pedigree to obtain exact one-locus inbreeding coeffi-
cients, and we simulate from the pedigree to obtain two-
locus inbreeding coefficients for each individual, where
the two-locus inbreeding coefficients can be summarized
by the following two functions of genetic distance x:
P(HBD at both of two loci separated by distance x) and
P(HBD at exactly one of two loci separated by distance
x). The one-locus inbreeding coefficients provide an un-
conditional estimate of the probability of HBD, which
is then modified by the multilocus genotype data by use
of the two-locus inbreeding coefficients. We restrict our
calculations to use only the multilocus genotypes of the
single individual for whom we are approximating the
conditional probability of HBD at a locus. In fact, for
low levels of inbreeding (i.e., parents are distantly re-
lated), incorporation of genotype data on additional
close relatives is likely to have little impact on the cal-
culation, unless some genotype data are missing for the
individual. With highly informative and reasonably
dense markers, extended regions of homozygosity are
strongly indicative of HBD, regardless of the genotypes
of other individuals.

We further simplify the calculations by assuming the
binary process representing HBD/non-HBD along an in-
dividual’s genome to be Markov. In fact, under the as-
sumption of a Poisson recombination model, the inheri-

tance vector process along the genome is Markov
(Donnelly 1983), but collapsing the inheritance vectors
into two groups according to whether they result in HBD
or not for the individual, does not, in general, give rise
to another Markov process. Nevertheless, the Markov
approximation provides a good estimate for pedigrees of
at least moderate size and complexity (Thompson 1994;
McPeek and Sun 2000), with small errors for most cases.
Exceptions occur only for those situations whose prob-
ability is very small.

Because the HBD/non-HBD process is unobserved,
we use an HMM method to calculate the probability
of HBD at a given point, conditional on the individ-
ual’s multilocus genotype data. We now summarize
the calculation, which implements Baum’s (1972) for-
ward and backward probabilities and is reviewed in
Rabiner (1989). Define a (i) p P(O , … ,O ,Q p i)k 1 k k

and , where M is theb (i) p P(O , … ,O FQ p i)k k�1 M k

number of genotyped markers, is the observed ge-Ok

notype at the kth marker, is the state of the MarkovQk

chain at position k, and i is 0 or 1, representing the
Markov states non-HBD or HBD, respectively. The
variables a and b are the forward and backward
probabilities and are initialized as follows: a p1

and . The recursionP(O FQ p i)P(Q p i) b (i) p 11 1 1 M

formulas are 1a (i) p � a (j)T P(O FQ p i)jp0k�1 k ji k�1 k�1

and where1b (i) p � T P(O FQ p j)b (j) T pjp0k ij k�1 k�1 k�1 ji

are the transition probabilities. WeP(Q p iFQ p j)k�1 k

can now write down the probability of a particular HBD
state given all the genotype data for that individual. Let
t be a position between markers k and ; thenk � 1

P(Q p iFO , … ,O )t 1 n

1 1

p 8 [a (l)P(Q p iFQ p l)� � k t k
lp0 mp0

# P(Q p mFQ p i)k�1 t

1

# P(O FQ p m)b (m)]9 a (l)b (l) .�Zk�1 k�1 k�1 k k
lp0

If t is at a marker,

a (i)b (i)t tP(Q p iFO , … ,O ) p .1t 1 M � a (l)b (l)t t
lp0

For t previous to the first marker,

P(Q p iFO , … ,O )t 1 M

1� a (j)b (j)P(Q p iFQ p j)1 1 t 1
jp0p ,1� a (l)b (l)1 1

lp0
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and similarly for t after the last marker.
To complete the above calculations, we still must de-

termine the Markov-chain transition probabilities T pji

, as well as the conditional observa-P(Q p iFQ p j)k�1 k

tion probabilities . Estimated values forP(O FQ p i) Tk k ji

as a function of genetic distance can be obtained, through
simulation, for each individual, as follows. Given our as-
sumption of a binary, continuous-time Markov chain, the
transition probabilities as a function of genetic distance
x are given by

�gxT (x) p 1 � f � fe ;00

T (x) p 1 � T ;01 00

�gxT (x) p f � (1 � f )e ;11

T (x) p 1 � T . (5)10 11

Note that the values for f and g will, in general, differ
for each individual. Furthermore, in the limit inx r �
the expression for we must end up with the un-T (x)11

conditional probability of being in the HBD state; hence,
f must be the inbreeding coefficient of the individual.
Estimates for g for each individual were obtained by
dropping a two-locus chromosome down the pedigree
and counting the number of times that both loci were,
exactly one was, or neither was HBD. This was done
for 100,000 replicates of each distance from 1 to 20 cM
in increments of 1 cM with chosen as the maximum-ĝ
likelihood estimate of g obtained from the simulated
data and the model of equation (5), under the restriction
that f equals the inbreeding coefficient for that individ-
ual. The estimates of g gave exponential curves for the
transition probabilities that matched the simulated data
extremely well.

To complete the HMM, we must specify the prob-
ability of observing a particular genotype at a marker
given the HBD state at that marker, .P(O FQ p i)k k

In our model, we allow for genotyping error and
mutation by introducing an error parameter � and
setting if andP[O p (a,b)FQ p 1] p 2�p p a ( bk k a b

if , where and are the allele2(1 � �)p � �p a p b p pa a a b

frequencies and 1 and 0 represent HBD and not HBD,
respectively. is given by the standardP [O FQ p 0]k k

Hardy-Weinberg values. When the genotype is missing,
we use , which amounts to assuming thatP(O FQ ) p 1k k

the missing value mechanism is independent of .Qk

LD-Mapping Methods

In addition to the linkage test described above, we
have also developed two association-based QTL-map-
ping methods. These LD-mapping methods use the same
basic framework as the HBD test and model the effect
of an allele, rather than a locus, as a main effect, while

accounting for the relationships among the individuals
by means of additive and dominance variance compo-
nents of random polygenic effects. The two approaches
we use are a multipoint method to detect association
under a recessive model (called “the allele-specific HBD
[ASHBD] method”) and a single-point method to detect
association under a GTAM. In both cases, tests are per-
formed only for alleles at genotyped markers, rather than
for arbitrary loci in the genome.

The ASHBD method uses both the inbreeding and the
LD in a founder population to find association between
a quantitative trait and HBD for a marker allele. If a
recessive QTL allele was introduced by a single founder,
then that QTL allele should remain associated with the
nearby alleles on the original founder haplotype. Indi-
viduals in the current population who, as a result of
inbreeding, receive two copies of a marker allele that
was on the founder haplotype, should show, on average,
a different value for the trait from the rest of the pop-
ulation. We consider the same model as in equation (1),
but with replaced by , the indicator that the in-1 1h ha

dividual is HBD for a particular allele. As before, the
efficient score statistic for testing the null hypothesis
( ) is asymptotically equivalent to the generalizedg p 0
regression t statistic for g in the model of equation (4),
but with replaced by , whereh E(1 Fgenotype data)ha

if the ith individual is ho-E(1 Fgenotype data) p hha i i

mozygous for the given allele and 0 otherwise, and ish
calculated as in the “Probability of HBD” subsection,
above.

The GTAM method for association with a particular
allele follows a similar framework to that of the HBD
and ASHBD methods. Now, however, we wish to allow
for a more general model than just recessive. This is
described by the linear model ,y p Xb � Gg � g � e
where the first column of is the number of copies ofG
the given allele in the individual’s genotype, the second
column is an indicator of homozygosity for the given
allele, and measures the strength of the ge-tg p (g ,g )1 2

netic effect at the locus. The quantities , , , andX b g e
are as described in equation (1). Within this parameter-
ization, is a measure of the additive effect of the alleleg1

and is a measure of the dominance effect (i.e., theg2

deviation from additivity). The expected phenotypic ef-
fect, then, of one copy of the allele is and of twog1

copies of the allele is . We test the null hypothesis2g � g1 2

. Through the same argument as used forg p g p 01 2

the HBD linkage test, the F test can be shown to be a
version of the efficient score statistic. Hence, we perform
a generalized regression for each allele at each marker
and use an F test to determine the significance of ing

each case. The relationship between estimates of heri-
tability and the most significant P values of ASHBD and
GTAM analyses on 20 QTLs are reported by Ober et
al. (2001).
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Assessment of Significance

Appropriate assessment of genomewide significance
for results in a large, complex pedigree can be a major
challenge. Standard Gaussian theory can be used to ob-
tain a locus-specific P value from the either the t or F
statistic calculated from the generalized regression, with
Bonferroni correction used to adjust for multiple tests
in the ASHBD and GTAM methods when several alleles
are present at a marker. Because the methods model the
locus-specific effect as a main effect rather than a ran-
dom effect, these P values are fairly robust to deviations
of the residuals from multivariate normality (Lehmann
1986, sec. 5.4). A greater issue in the interpretation of
the results is correction of the P value as a result of
multiple tests throughout the genome. Although Bon-
ferroni correction works well for a single marker with
multiple alleles, in spite of a tendency for positive cor-
relation among the statistics for alleles at the same locus,
such a strategy is far too conservative when testing at
multiple, linked loci. Here, we develop a novel permu-
tation-based test, which is applicable at the genome-
screen stage, when the positions of markers could rea-
sonably be assumed to be independent of linkage/LD
results under the null hypothesis. The permutation-based
test allows us to assess significance in the presence of
multiple, dependent tests and to guard against deviations
from normality in the data, while preserving the covar-
iance structure due to relatedness among individuals.
When the data follow a multivariate-normal distribu-
tion, this test is, asymptotically, a true permutation test.

The validity of a permutation test relies on the ex-
changeability of the elements to be permuted. In the case
of testing that the slope is zero in simple linear regression
(i.e., a single predictor) there is an accepted method of
permutation for exact tests of the hypothesis (Anderson
and Robinson 2001). This, however, is not true for mul-
tiple regression, which is a special case of the statistical
framework we use. The lack of exchangeability is a result
of correlations among the variables to be permuted; here,
either the phenotypes or genotypes. In the multiple-lin-
ear-regression model , whereY p b � b X � b Z � e1 2 3

one wishes to test the dependence of on (i.e., theY Z
null hypothesis : ), neither the nor theH b p 0 Z Y0 3

variables are exchangeable with respect to the other, be-
cause the are unknown parameters and must be es-bi

timated (Good 2000; Anderson and Robinson 2001).
Instead, when they are independent and identically dis-
tributed (IID), it is the true error terms that are ex-e
changeable random variables. However, it is not the e
values that are observed but rather their estimates , theê
residuals, upon which a correlation is induced by the
estimation process, rendering them nonexchangeable.
Nevertheless, a number of approximate, yet asymptot-
ically exact, permutation methods have been proposed

and are reviewed and evaluated by Anderson and Rob-
inson (2001). In pedigree analysis, the situation is further
complicated because the are not IID but have a co-e
variance structure due to relatedness of the individuals.
We overcome these difficulties for multivariate-normal
data by finding a linear transformation that, when ap-
plied to , the estimate of under the null hypothesis,ê e0

results in the new vector , whose elements are uncor-y

related. Because the multivariate-normal distribution is
completely specified by its first two moments (the mean
vector and covariance matrix), these transformed resid-
uals are independent and, hence, exchangeable. We then
permute the elements of to obtain . The process ispy y

completed by untransforming and obtaining shuffledpy

data , where b0 is the estimate of bpˆy p Xb � e (y )p 0 p

under the null model. (We use the convention of An-
derson and Robinson [2001], which specifies that “p”
used as a superscript denotes that the appended variable
is permuted, whereas “p” used as a subscript denotes
that the appended variable is derived from permuted and
unpermuted variables.) In principle, data sets resulting
from all permutations p can then be analyzed to obtain
an empirical P value. In practice, we take a random
sample of permutations. We now describe, in detail, our
permutation method.

We consider linear models whose form, under the null
hypothesis, is , where is the phenotype vec-y p Xb � e y
tor; is the matrix of covariates, including an intercept;X

is the vector of regression coefficients; and is theb e
vector of error terms with covariance matrix . Assume,Q

for the moment, that is known. To calculate an em-Q

pirical P value from a permutation test, we need to gen-
erate values of under the null hypothesis through ayp

permutation of a transformation of the original data. By
generating many and performing the same analysis asyp

was done with the original data, we find the empirical
P value. As mentioned above, it is not the elements of

that are exchangeable, but rather the error termsy e
(when IID). Our error terms, however, have covariance
matrix , giving rise to residuals, under the null model,Q

of , where is thet �1 �1 t �1ˆ ˆê p y � Xb b p (X Q X) X Q y0 0 0

least-squares estimate of under the null model. Underb

the null hypothesis, the covariance matrix of isê0

, and, thus, its elements are not∗ t �1 �1 tS p Q � X(X Q X) X
exchangeable.

To find exchangeable elements we first transform the
linear model by decomposing the covariance matrix,

and, assuming is invertible, premultiplyingtQ p C C C
the regression equation by to obtain ,�tC z p Wb � �
where , , and . The covar-�t �t �tz p C y W p C X � p C e
iance matrix of the residuals isˆ�̂ p z � Wb S p I �0 0

. Assuming is of full rank, then thet �1 tW(W W) W X
matrix is symmetric of rank , and idem-n # n S n � k

potent (i.e., ), where n is the number of individ-2S p S

uals and k is the number of covariates (i.e., columns of
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). The spectral theorem tells us we can make the de-X
composition , where is a diagonal matrixtS p VLV L

with the first elements equal to the eigenvalue 1n � k
and the last k elements equal to the eigenvalue 0, and

is an orthogonal matrix whose first columns areV n � k
eigenvectors associated with eigenvalue 1 and whose last
k columns are eigenvectors associated with eigenvalue
0. Writing , where is theV p (V V ) V p (v … v )1 0 1 1 n�k

matrix of eigenvectors with eigenvalue 1, we obtain
with . The vector has co-t t tˆS p VV V V p I y p V �1 1 1 1 n�k 1 0

variance matrix and its elements, undertV SV p I1 1 n�k

the assumption of multivariate normality, are IID and,
hence, exchangeable. The elements of are now per-y

muted to obtain , where P is a permutationpy p Py

matrix, with the result transformed by to get ˆV � p1 0p

. Note that under the identity permutationp ˆV y � p1 0p

, as expected. The shuffled data obtained fromˆ ˆS� p �0 0

the permutation are

tˆ ˆy p Xb � C �p 0 0p

t t �tˆ ˆp Xb � C V PV C e .0 1 1 0

Note that when is known, this method allows one toQ

perform an exact permutation test under the assumption
of multivariate normality. For our application, is notQ

known, and we approximate by , where .tˆ ˆ ˆˆC C Q p C C0

Thus, our test is only asymptotically exact for multi-
variate-normal data.

We can now calculate empirical locus-specific and ge-
nomewide P values. For a given simulated data set ,yp

compute the standard t statistic (or F statistic for the
GTAM) for each , and obtain for each the correspond-ĝ

ing P value calculated according to Gaussian theory. For
the HBD-mapping test, we define this to be the nominal
locus-specific P value. Note that for the ASHBD and
GTAM tests, there will typically be more than one such
P value at each locus, corresponding to different alleles.
In that case, we take the minimum P value at each locus
and Bonferroni-correct to obtain the nominal locus-spe-
cific P value. To obtain the empirical locus-specific P
value, calculate the minimum P value at the locus for
each simulated realization as well as for the real data.
The proportion of simulated results for which the min-
imum P value at the locus was smaller than that in the
real data is the empirical locus-specific P value. In ad-
dition, an empirical genomewide P value for each locus
is calculated as follows. For each simulated realization,
find the smallest P value of all tests performed across
the genome. The proportion of these that are smaller
than the smallest P value at a given locus in the real
data set is defined to be the empirical genomewide P
value for that locus. In addition, the level for suggestive

significance can be set so that it is exceeded, on average,
once per simulated realization.

The permutation-based assessment of significance we
describe relies on an assumption of independence be-
tween the marker positions and the values of the test
statistic under the null hypothesis. Thus, it is applicable
to situations where the individual markers were not se-
lected according to earlier results for linkage or LD in
the same data set. In a genome scan, the markers used
are typically from a previously chosen framework set
that provides ∼5–10 cM average intermarker distance.
Our permutation-based procedure is applicable when
framework markers are used. Similarly, if additional
markers have been typed, for instance, to shorten certain
gaps in the framework set, but were not chosen on the
basis of results of a previous analysis of the same data
set, the permutation procedure may, again, be used to
determine genomewide significance. However, if addi-
tional markers are added to follow-up on a potentially
interesting signal, the genomewide significance of these
additional markers cannot be determined via our test,
because their positions are selected on the basis of the
signal. For the permutation test to be valid in this case,
the positions of the additional markers would have to
change with each permutation, based on the initial map-
ping results of that permutation. On the other hand, the
test is valid for candidate gene studies, where several
markers have been placed around a previously deter-
mined candidate gene, as a way to correct for multiple
comparisons across linked markers.

Results

We apply the methods described above to a sample of
individuals who are members of a large, complex Hut-
terite pedigree. The Hutterites are a religious sect that
originated in the Tyrolean Alps in the 1500s. Between
the mid-1700s and mid-1800s, while in Russia, the pop-
ulation grew in size from ∼120 to 11,000 members (Hos-
tetler 1974). In the 1870s, ∼900 of these members mi-
grated to what is now South Dakota, and approximately
half settled on three communal farms. The population
has since expanded dramatically, with 135,000 Hutter-
ites living in 1350 communal farms (i.e., colonies) in the
northern United States and western Canada. The Hut-
terites’ communal lifestyle ensures that all members are
exposed to a relatively uniform environment. Genealog-
ical records trace all extant Hutterites to !90 ancestors
who lived in the early 1700s to early 1800s (Martin
1970). The relationships among these ancestors are un-
known, and some of them may have been related. The
three original South Dakota colonies have given rise to
the three major subdivisions of the modern Hutterite
population, the Schmiedeleut (S-leut), Dariusleut, and
Leherleut. Members of each subdivision have remained
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Figure 1 Results of multipoint HBD analysis. P values and equivalent LOD scores with 1 df are plotted with respect to chromosomal position for the genome. The solid line plots the locus-
specific value, and the dotted line plots the genomewide value.
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reproductively isolated from each other since 1910
(Bleibtreu 1964). The subjects of our study, the S-leut
Hutterites of South Dakota, are descendants of 64 Hut-
terite ancestors and represent the four S-leut–colony line-
ages defined by Mange (1964). Information on the re-
lationships among members of our sample are in the
form of a 13-generation 1,623-member genealogy.

Our study includes Hutterites from nine communal
farms in South Dakota. Subjects were evaluated for a
variety of qualitative and quantitative phenotypes, dur-
ing trips to Hutterite colonies in 1994 and in 1997–98.
All Hutterites of 15 years of age who were in the col-
onies on the days of our visits were included in the
studies. Individuals who were �14 years of age donated
one blood sample after an overnight fast, from which
insulin levels were determined as described by Ober et
al. (2001). A total of 497 individuals were included in
subsequent analyses of fasting insulin level, among
whom the mean insulin level was 101.56 pmol/liter with
an SD of 61.32 pmol/liter. To account for skewness in
the phenotype distribution, the fasting insulin levels
were transformed to approximate multivariate nor-
mality by taking the log of the log of the measured
levels. Age was found to be the only significant covari-
ate, and estimates of the additive and dominance var-
iances were obtained using the maximum-likelihood
method of Abney et al. (2000). There was no detectable
dominance variance, and we estimated the narrow and
broad heritability to be 0.32 (Ober et al. 2001).

Genotype data were collected on 386 microsatellite
markers (screening set 9) by the National Heart, Lung
and Blood Institute–funded Mammalian Genotyping Ser-
vice, yielding a 9.1-cM map (Center for Medical Genet-
ics, Marshfield Medical Research Foundation). Subjects
were genotyped for 1200 additional markers in selected
regions of the genome, as described elsewhere (Ober et
al. 2000). These additional markers were selected on the
basis of results of analyses of asthma, and it seems rea-
sonable to assume that, under the null hypothesis, their
positions are independent of the linkage and LD signals
for the analysis of insulin levels. Hence, these markers
meet our criteria for validity of the empirical genomewide
P values. From the genotype data we calculated the prob-
ability of HBD for each individual at all genetic markers
as well as at three loci between markers. The calculations
were performed assuming a genotype error plus mutation
rate of 1%, and 1,000 data sets were simulated for pur-
poses of assessing significance.

The results of our multipoint genome scan by use of
the HBD linkage method are shown in figure 1. The
locus-specific P values calculated empirically and from
Gaussian theory were very similar, with large relative
differences only for those loci whose nominal P values
were too small to accurately compute empirically on the
basis of 1,000 simulations. We observed an ∼4-cM-wide

region comprising loci with empirical genomewide sig-
nificance of !0.02 at ∼6 cM from the p-ter of chro-
mosome 19. The peak of this region has a genomewide
significance of 0.011, which corresponds to a nominal
locus-specific P value of . This locus was as-�51.3 # 10
sociated with decreased levels of insulin. In addition, a
region near the p-ter of chromosome 16 had locus-spe-
cific P values !.001 (genomewide P values ∼.2) and was
associated with decreased levels of insulin. Plots of chro-
mosomes 19 and 16 are shown in greater detail in fig-
ures 2 and 3, respectively. No other regions reached
levels of suggestive or better evidence for linkage.

Genome scans were also performed using the ASHBD
and GTAM methods. Although there were no loci that
met genomewide significance, there were several loci
that had suggestive associations. Under the ASHBD
model, four loci had locus-specific P values !.002. These
included D16S2622 (8 cM from p-ter) and ATA41E04
(11 cM from p-ter), which are neighboring loci in the
same region of 16p that was identified by the HBD-
mapping method; D19S591 (10 cM from p-ter), which
is in the same region of 19p that was identified by HBD
mapping; and D1S2644 (44 cM from p-ter). The most
significant alleles at these markers were all associated
with a decrease in insulin levels. Under the GTAM
method, one locus, D19S591 (10 cM from p-ter), which
was also identified by ASHBD, had a locus-specific P
value !.001. The effect of this allele was approximately
recessive ( ), with the presence of two copiesg p �4.8g2 1

of the associated allele conferring lower insulin levels.
The positions of these chromosome 19 and 16 markers
are shown in figures 2 and 3, and P values by all three
methods are shown in table 1.

There are no obvious insulin-related genes within the
region of chromosome 16 that was suggestively linked
to and associated with insulin levels according to the
HBD and ASHBD analyses, respectively. On chromo-
some 19, however, the insulin-receptor gene INSR is
located ∼25 cM from the p-ter. It is impossible to de-
termine with certainty whether INSR is responsible for
the signal that we observe on chromosome 19, but given
both the lack of significant P values at ∼25 cM from
the p-ter and the distance between the peak and INSR
( cM), this seems unlikely. The results of the≈ 13
ASHBD and GTAM analyses generally matched those
of the HBD linkage analysis. Finally, the marker alleles
associated with insulin levels at the chromosome 19
marker were different under the ASHBD and GTAM
analyses. This would be consistent with allelic hetero-
geneity at a QTL, although we cannot exclude other
possible explanations.

Discussion

We have introduced three new QTL-mapping methods,
a homozygosity linkage-mapping method and two LD-
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Figure 2 Results of the multipoint HBD analysis for chromo-
some 19. The solid line plots the locus-specific value, and the dotted
line plots the genomewide value. The position of D19S591, which
showed suggestive evidence of association under the ASHBD and
GTAM analyses, is indicated on the X-axis.

Figure 3 Results of the multipoint HBD analysis for chromo-
some 16. The solid line plots the locus-specific value, and the dotted
line plots the genomewide value. The positions of D16S2622 and
ATA41E04, which showed suggestive evidence of association under
the ASHBD analysis, are indicated on the X-axis.

mapping methods, and a novel permutation-based test
for assessing locus-specific and genomewide significance.
The mapping methods were designed for randomly as-
certained phenotypes in isolated founder populations
with complex, inbred pedigrees. The HBD and ASHBD
methods, in particular, use the presence of inbreeding to
search for QTLs that, when homozygous, have a dis-
cernible effect on the trait. The GTAM method, on the
other hand, does not require inbreeding, but does use
the extensive LD expected in such populations to detect
QTLs that follow a more general genetic model. Linkage
and LD analyses have traditionally been difficult in
groups with large, complex pedigrees, such as the Hut-
terites, because of the computational burden of doing
likelihood and IBD calculations. Our HBD linkage-map-
ping method avoids the burden of calculating likelihoods
by using the efficient score statistic, which is locally most
powerful in the neighborhood of the null hypothesis.
Furthermore, by focusing on homozygosity mapping, we
need to calculate the IBD probabilities of the two alleles
within each individual, rather than more-general IBD
probabilities among the study sample. By making a Mar-
kov approximation of the HBD/non-HBD process along
the genome for each individual, we are able to use an
HMM method to efficiently compute the probability of
HBD at any locus, conditional on all the genotype data
for that individual and the known pedigree specifying
the relationship of the parents. The Markov approxi-
mation that we use appears to be very reliable on the
basis of our simulations (data not shown).

LD-mapping methods may be useful to find genes of
moderate effect in isolated founder populations (Risch
and Merikangas 1996; Tu and Whittemore 1999). Even
though LD-mapping methods do not typically require

the difficult IBD calculations used in linkage analyses,
there are still problematic methodological issues that
must be solved. Isolated founder populations may be
useful for LD-mapping studies, in part because QTL
alleles may be introduced into the population on a single
founder haplotype or a few founder haplotypes. Hence,
there may be a greater probability of finding the QTL
by detecting an association of the trait with a marker
allele on the same founder haplotype. However, if the
marker allele is common and was introduced into the
population on multiple haplotypes, any association be-
tween the trait and the marker allele may be difficult,
or impossible, to detect. The ASHBD method that we
introduced can help circumvent this problem by com-
bining multipoint HBD information with a means of
testing for alleles in LD with a QTL allele. Another
difficulty arises because in isolated founder populations
many of the study individuals may be closely related,
depending on the current size of the population and
how many generations back it was founded. In this case,
background polygenic effects that are shared among the
individuals may significantly contribute to the trait, and,
if uncontrolled for, give rise to an artificially inflated sig-
nal and attendant type I error rate (Newman et al. 2001).
Given genealogical information, our methods correct for
this effect by modeling the polygenic background with
additive and dominance variance components.

The results of our analysis of fasting insulin level
indicate that we do have power to detect at least one
locus linked to insulin levels and others that are sug-
gestively linked or associated. Although, in this exam-
ple, the three different methods tended to choose from
among the same set of best loci, one would not nec-
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Table 1

Nominal Locus-Specific and Genomewide P Values

LOCATION

DISTANCE

FROM p-ter
(cM)

P VALUES UNDER

HBD ASHBD GTAM

Locus Specific Genomewide Locus Specific Genomewide Locus Specific Genomewide

Chromosome 1:
D1S2644 44 .039 1.0 .0013 .46 .0023 .76

Chromosome 16:
D16S2622 8 .00048 .20 .0015 .66 .016 1.0
ATA41E04 11 .0010 .36 .00091 .34 .0049 .90

Chromosome 19:
D19S591 10 �53.8 # 10 .02 .0016 .43 .00091 .45

essarily expect this to be the case. The utility of the
three methods depends on the circumstances of the in-
troduction of the QTL alleles into the population, and,
consequently, one can expect the results of analyses of
a data set by these methods to differ, in general. The
HBD linkage method, for instance, associates deviations
in the trait value with general autozygosity for founder
alleles at a locus (i.e., the two alleles in an individual
are IBD, but it is not necessarily the same allele from
individual to individual). We expect this method will be
able to detect a specific QTL allele that acts recessively
but that may occur on different haplotypes, or multiple
recessive QTL alleles that cause a similar type of de-
viation. The ASHBD method looks for deviations in
trait values that are associated with HBD for a partic-
ular allele at a marker. This method would be useful
when a recessive QTL allele was introduced on a single
founder haplotype. It may appear that both the HBD
and ASHBD methods should give approximately equiv-
alent results when applied to a single data set. However,
this is not necessarily the case. For instance, the ASHBD
method may have a positive—and the HBD method a
negative—result when other founder haplotypes have
recessive alleles at this QTL that have an effect opposite
to that of the recessive QTL allele detected by ASHBD.

Although the HBD and ASHBD methods require in-
breeding to be effective, the GTAM method does not.
Instead, it looks for deviations in trait values that are
associated with a particular marker allele, where the
mode of inheritance is given by a GTAM. This method
has the advantage of a more general genetic model than
that for HBD or ASHBD, but it is single point, whereas
the others are multipoint. Thus, in some situations it
may have more power and in others less. We note that
a single-point method can often be advantageous in
regions with substantial map error.

Although we have discussed the HBD linkage-mapping
method as a separate test from the association methods
(i.e., ASHBD and GTAM), it is possible to combine link-
age and association in a single method. The linear-model
framework, which we use to construct our tests, can eas-
ily accommodate multiple predictors. In a combined anal-

ysis, predictors for both linkage and association could be
included. For instance, in the HBD analysis, an indicator
for homozygosity for a particular allele could be included.
This could allow one, for example, to test whether ho-
mozygosity for a given allele could fully explain the ev-
idence for linkage to the region. The linear-model frame-
work can also be useful for incorporating multiple linked
or unlinked QTLs into the model. For instance, a com-
bined analysis could allow one to test for linkage to a
QTL that is not in LD with the associated marker allele.

Assessment of significance is essential to the interpre-
tation of the genome-scan results. For certain select study
designs and analysis methods, it is possible to use guide-
lines that have been suggested elsewhere (Lander and
Kruglyak 1995). For quantitative-trait analyses in large,
complex pedigrees, however, these guidelines are not ap-
propriate, and an empirical method may be preferable.
We have developed a novel permutation-based test for
both locus-specific and genomewide significance. Our
method has the advantages of giving asymptotically exact
P values when the data are multivariate normal and pre-
serving the correlation structure resulting from the ped-
igree. The permutation procedure that we describe is also
applicable to a wider set of methods than the three we
present here. For instance, variance-component linkage
methods (Amos 1994; Almasy and Blangero 1998) use
the same linear model under the null hypothesis as that
in the methods introduced here and could obtain empir-
ical genomewide P values by use of this permutation-
based method.

By taking advantage of the relatively simple form of
the score statistic, we have developed an efficient
means of performing linkage and association mapping
for quantitative traits in a population that poses sig-
nificant analytical challenges. We demonstrated the
utility of the methods by applying them to fasting in-
sulin levels in the Hutterites. The Hutterites are an
extreme example of a population with a large, complex
pedigree, but these methods can also be applied to
other populations with an arbitrary genealogical
structure.
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